Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính giới hạn \(\lim \dfrac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).

Câu hỏi số 336308:
Vận dụng

Tính giới hạn \(\lim \dfrac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:336308
Phương pháp giải

+) Chứng minh \({1^2} + {2^2} + {3^2} + ... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\,\,\forall n \ge 1,\,\,n \in \mathbb{Z}\) bằng phương pháp quy nạp.

+) Tính giới hạn bằng cách chia cả tử và mẫu cho \(n\) với số mũ là số mũ cao nhất của tử và mẫu.

Giải chi tiết

Bằng phương pháp quy nạp toán học ta chứng minh \({1^2} + {2^2} + {3^2} + ... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\,\,\forall n \ge 1,\,\,n \in \mathbb{Z}\).

Đẳng thức trên đúng với \(n = 1\) vì \(1 = \dfrac{{1.2.3}}{6}\).

Giả sử đẳng thức trên đúng đến \(n = k \Rightarrow {1^2} + {2^2} + ... + {k^2} = \dfrac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\), ta cần chứng minh nó đúng đến \(n = k + 1\), tức là cần chứng minh \({1^2} + {2^2} + ... + {\left( {k + 1} \right)^2} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6}\).

Ta có:

\(\begin{array}{l}VT = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2} = \dfrac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2}\\ = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + k + 6k + 6} \right)}}{6} = \dfrac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6} = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6} = VP\end{array}\)

\( \Rightarrow \) Đẳng thức được chứng minh. Khi đó ta có:

\(\begin{array}{l}\lim \dfrac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}} = \lim \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6\left( {{n^3} + 3n} \right)}}\\ = \lim \dfrac{{1.\left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)}}{{6\left( {1 + \dfrac{3}{{{n^2}}}} \right)}} = \dfrac{{1.1.2}}{{6.1}} = \dfrac{1}{3}\end{array}\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com