Tính giới hạn \(\lim \dfrac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).
Tính giới hạn \(\lim \dfrac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).
Đáp án đúng là: A
Quảng cáo
+) Chứng minh \({1^2} + {2^2} + {3^2} + ... + {n^2} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\,\,\forall n \ge 1,\,\,n \in \mathbb{Z}\) bằng phương pháp quy nạp.
+) Tính giới hạn bằng cách chia cả tử và mẫu cho \(n\) với số mũ là số mũ cao nhất của tử và mẫu.
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












