Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng không chứa \(x\) trong khai triển của biểu thức: \({\left( {3{x^3} - \dfrac{2}{{{x^2}}}}

Câu hỏi số 381659:
Vận dụng

Tìm số hạng không chứa \(x\) trong khai triển của biểu thức: \({\left( {3{x^3} - \dfrac{2}{{{x^2}}}} \right)^5}\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:381659
Phương pháp giải

Sử dụng công thức tính số hạng tổng quát \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\).

Giải chi tiết

Số hạng tổng quát : \({T_{k + 1}} = C_5^k.{\left( {3{x^3}} \right)^{5 - k}}.{\left( { - \dfrac{2}{{{x^2}}}} \right)^k}\) \( = C_5^k{.3^{5 - k}}.{x^{15 - 3k}}.\dfrac{{{{\left( { - 2} \right)}^k}}}{{{x^{2k}}}}\) \( = C_5^k{.3^{5 - k}}.{\left( { - 2} \right)^k}.{x^{15 - 5k}}\)

Số hạng không chứa \(x\) ứng với \(15 - 5k = 0 \Leftrightarrow k = 3\)

Vậy số hạng không chứa \(x\) là \(C_5^3{.3^{5 - 3}}.{\left( { - 2} \right)^3} =  - 720\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com