Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 1\) và tổng \(100\)
Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 1\) và tổng \(100\) số hạng đầu bằng \(24850\). Tính \(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + \dfrac{1}{{{u_3}{u_4}}} + ...... + \dfrac{1}{{{u_{49}}{u_{50}}}}\).
Đáp án đúng là: D
Quảng cáo
- Tìm CSC đã cho bằng cách sử dụng công thức \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
- Thay vào tổng đã cho tính toán.
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












