Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(G\) là trọng tâm của tam
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(G\) là trọng tâm của tam giác \(SAD\). Lấy điểm \(M\) thuộc cạnh \(AB\) sao cho \(AB = 3AM\).
1) Tìm giao tuyến của mặt phẳng \(\left( {SAD} \right)\) và mặt phẳng \(\left( {GBC} \right)\). Tìm giao điểm \(H\) của đường thẳng \(BC\) với mặt phẳng \(\left( {SGM} \right)\).
2) Chứng minh rằng đường thẳng \(MG\) song song với mặt phẳng \(\left( {SBC} \right)\).
3) Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) và song song với \(AD\) và \(SB\), \(\left( \alpha \right)\) cắt các cạnh \(CD,\,\,SD,\,\,SA\) lần lượt tại các điểm \(N,\,\,P,\,\,Q\).
Xác định thiết diện của mặt phẳng \(\left( \alpha \right)\) với hình chóp \(S.ABCD\).
Quảng cáo
a) Sử dụng định lí ba giao tuyến song song: \(\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\).
b) Sử dụng định lí \(\left\{ \begin{array}{l}a \not\subset \left( P \right)\\a//b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( P \right)\).
c) Sử dụng hệ quả \(\left\{ \begin{array}{l}a//\left( P \right)\\a \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\end{array} \right. \Rightarrow a//d\).
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













