Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{ - {x^2} + 3x + 4}}{{x - 4}}\,\,\,khi\,\,x \ne

Câu hỏi số 403428:
Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{ - {x^2} + 3x + 4}}{{x - 4}}\,\,\,khi\,\,x \ne 4\\mx + 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 4\end{array} \right.\). Tìm các giá trị của tham số \(m\) để hàm số liên tục tại \(x = 4\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403428
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0}\) thì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \dfrac{{ - {x^2} + 3x + 4}}{{x - 4}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to 4} \dfrac{{ - \left( {x - 4} \right)\left( {x + 1} \right)}}{{x - 4}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop {\lim }\limits_{x \to 4} \left[ { - \left( {x + 1} \right)} \right] =  - 5\\f\left( 4 \right) = 4m + 3\end{array}\).

Để hàm số liên tục tại \(x =  - 4\) thì \(\mathop {\lim }\limits_{x \to  - 4} f\left( x \right) = f\left( { - 4} \right)\) \( \Leftrightarrow 4m + 3 =  - 5 \Leftrightarrow m =  - 2\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com