Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với mặt

Câu hỏi số 403458:
Vận dụng cao

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy, \(SA = a\sqrt 2 \). Gọi \(M,\,\,N\) lần lượt là hình chiếu vuông góc của điểm \(A\) trên các cạnh \(SB,\,\,SD\). Góc giữa mặt phẳng \(\left( {AMN} \right)\) và đường thẳng \(SB\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:403458
Phương pháp giải

- Tìm giao điểm \(P\) của \(SC\) và \(\left( {AMN} \right)\), chứng minh \(SP \bot \left( {AMN} \right)\).

- Góc giữa đường và mặt là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

- Sử dụng hệ thức lượng và tỉ số lượng giác của góc nhọn trong tam giác vuông để tính góc.

Giải chi tiết

Gọi \(O = AC \cap BD\), trong \(\left( {SBD} \right)\) gọi \(E = MN \cap SO\).

Trong \(\left( {SAC} \right)\) kéo dài \(AE\) cắt \(SC\) tại \(P\), khi đó ta có \(\left( {AMN} \right) \cap SC = P\).

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right.\) \( \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM\).

          \(\left\{ \begin{array}{l}AM \bot SB\,\,\left( {gt} \right)\\AN \bot BC\,\,\left( {cmt} \right)\end{array} \right. \Rightarrow AM \bot \left( {SBC} \right)\) \( \Rightarrow AM \bot SC\).

Chứng minh tương tự ta có \(AN \bot \left( {SCD} \right) \Rightarrow AN \bot SC\).

\( \Rightarrow AC \bot \left( {SMN} \right)\) tại \(P\).

Do đó \(PM\) là hình chiếu của \(SM\) lên \(\left( {AMN} \right)\).

\( \Rightarrow \angle \left( {SB;\left( {AMN} \right)} \right) = \angle \left( {SM;\left( {AMN} \right)} \right) = \angle \left( {SM;PM} \right) = \angle SMP\).

Áp dụng hệ thức lượng trong tam giác vuông \(SAB\) ta có: \(SM = \dfrac{{S{A^2}}}{{SB}} = \dfrac{{S{A^2}}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2{a^2}}}{{\sqrt {2{a^2} + {a^2}} }} = \dfrac{{2a}}{{\sqrt 3 }}\)

Áp dụng hệ thức lượng trong tam giác vuông \(SAC\) ta có: \(SP = \dfrac{{S{A^2}}}{{SC}} = \dfrac{{S{A^2}}}{{\sqrt {S{A^2} + A{C^2}} }} = \dfrac{{2{a^2}}}{{\sqrt {2{a^2} + 2{a^2}} }} = a\).

Xét tam giác \(SMP\) vuông tại \(P\) có \(\sin \angle SMP = \dfrac{{SP}}{{SM}} = \dfrac{a}{{\dfrac{{2a}}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 }}{2}\)\( \Rightarrow \angle SMP = {60^0}\).

Vậy góc giữa mặt phẳng \(\left( {AMN} \right)\) và đường thẳng \(SB\) bằng \({60^0}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com