Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{1}{3}{x^3} + \left( {2m + 1} \right){x^2} - mx - 4\). Tìm tất cả các giá trị của

Câu hỏi số 403460:
Vận dụng

Cho hàm số \(y = \dfrac{1}{3}{x^3} + \left( {2m + 1} \right){x^2} - mx - 4\). Tìm tất cả các giá trị của \(m\) để \(y' \ge 0\) với mọi \(x \in \mathbb{R}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:403460
Phương pháp giải

Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta  \le 0\end{array} \right.\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\).

Ta có:

\(\begin{array}{l}y = \dfrac{1}{3}{x^3} + \left( {2m + 1} \right){x^2} - mx - 4\\ \Rightarrow y' = {x^2} + 2\left( {2m + 1} \right)x - m\\ \Rightarrow y' \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {x^2} + 2\left( {2m + 1} \right)x - m \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\Delta ' = {\left( {2m + 1} \right)^2} + m \le 0\end{array} \right.\\ \Leftrightarrow 4{m^2} + 4m + 1 + m \le 0\\ \Leftrightarrow 4{m^2} + 5m + 1 \le 0\\ \Leftrightarrow  - 1 \le m \le  - \dfrac{1}{4}\end{array}\)

Vậy \(m \in \left[ { - 1; - \dfrac{1}{4}} \right]\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com