Tính \(I = \lim \left( {\dfrac{1}{{{n^2}}} + \dfrac{3}{{{n^2}}} + \dfrac{5}{{{n^2}}} + ... + \dfrac{{2n +
Tính \(I = \lim \left( {\dfrac{1}{{{n^2}}} + \dfrac{3}{{{n^2}}} + \dfrac{5}{{{n^2}}} + ... + \dfrac{{2n + 1}}{{{n^2}}}} \right)\).
Đáp án đúng là: C
Quảng cáo
- Sử dụng công thức tính tổng \(n\) số hạng đầu của CSC có số hạng đầu \({u_1}\), công sai \(d\) là \({S_n} = \dfrac{{\left( {{u_1} + {u_n}} \right).n}}{d}\).
- Rút gọn và tính giới hạn bằng cách chia cả tử và mẫu cho \(n\).
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












