Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Chứng minh rằng phương trình \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm.

Câu hỏi số 404053:
Vận dụng

Chứng minh rằng phương trình \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm.

Quảng cáo

Câu hỏi:404053
Phương pháp giải

- Xét hàm số \(f\left( x \right) = 2{x^3} - 5x + 1\) xác định và liên tục trên \(\mathbb{R}\).

- Sử dụng định lí: Nếu hàm số liên tục trên \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).

Giải chi tiết

Xét hàm số \(f\left( x \right) = 2{x^3} - 5x + 1\) xác định và liên tục trên \(\mathbb{R}\).

Ta có \(f\left( { - 2} \right) =  - 5\), \(f\left( 0 \right) = 1\), \(f\left( 1 \right) =  - 2\), \(f\left( 2 \right) = 7\).

\(f\left( { - 2} \right).f\left( 0 \right) =  - 5 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( { - 2;0} \right)\).

Tương tự:

\(f\left( 0 \right).f\left( 1 \right) =  - 2 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {0;1} \right)\).

\(f\left( 1 \right).f\left( { - 2} \right) =  - 14 < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm thuộc \(\left( {1;2} \right)\).

Do các khoảng \(\left( { - 2;0} \right)\), \(\left( {0;1} \right)\), \(\left( {1;2} \right)\) rời nhau nên phương trình \(f\left( x \right) = 0\) có ít nhất 3 nghiệm phân biệt.

Mà \(2{x^3} - 5x + 1 = 0\) là phương trình bậc ba chỉ có tốt đa 3 nghiệm phân biệt.

Vậy phương trình \(2{x^3} - 5x + 1 = 0\) có đúng 3 nghiệm phân biệt (đpcm).

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com