Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right) = {x^3} + {x^2} - 1\) có đồ thị \(\left( C \right)\).

Cho hàm số \(y = f\left( x \right) = {x^3} + {x^2} - 1\) có đồ thị \(\left( C \right)\).

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Thông hiểu

Tính đạo hàm của hàm số : \(y = f\left( x \right) = {x^3} + {x^2} - 1\)

Đáp án đúng là: C

Câu hỏi:404783
Phương pháp giải

Sử dụng công thức tính đạo hàm \(\left( {{x^n}} \right)' = n.{x^{n - 1}}\).

Giải chi tiết

\(f'\left( x \right) = 3{x^2} + 2x\).

Đáp án cần chọn là: C

Câu hỏi số 2:
Thông hiểu

Viết phương trình tiếp tuyến của đồ thị \(\left( C \right)\) tại điểm có hoành độ \({x_0} = 1\).

Đáp án đúng là: B

Câu hỏi:404784
Phương pháp giải

Tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

Giải chi tiết

Ta có: \(f'\left( 1 \right) = {3.1^2} + 2.1 = 5\) và \(f\left( 1 \right) = {1^3} + {1^2} - 1 = 1\).

Vậy phương trình tiếp tuyến của đồ thị \(\left( C \right)\) tại điểm có hoành độ \({x_0} = 1\) là:

\(y = 5\left( {x - 1} \right) + 1 = 5x - 4\).

Đáp án cần chọn là: B

Quảng cáo

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com