Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 6} - a}}{{\sqrt {x + 1}
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt {x + 6} - a}}{{\sqrt {x + 1} - 2}}\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ne 3\\{x^3} - \left( {2b + 1} \right)x\,\,\,\,khi\,\,x = 3\end{array} \right.\) trong đó a, b là các tham số thực. Biết hàm số liên tục tại x = 3. Tính \(a^2.b\)
Đáp án đúng là:
Quảng cáo
Xét các trường hợp của a và tính \(\mathop {\lim }\limits_{x \to 3} f\left( x \right)\) , để hàm số liên tục tại x = 3 thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\)
Đáp án cần điền là: 35
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












