Hình giải tích phẳng
Chuyên đề hình học phẳng giới thiệu các bài tập hình học giải tích trong mặt phẳng. Chuyên đề này giúp các em luyện thi Đại học, phương pháp tọa độ
Lưu ý: Chức năng này hiện không còn dùng nữa, vui lòng chọn các khóa học để xem các bài giảng hoặc làm đề thi online!
Bài tập luyện
Câu hỏi số 391:
Trong mặt phẳng (P) cho đường tròn ( C ) tâm O, đường kính AB = 2R; M là một điểm di động tren ( C ); H là chân đường vuông góc của M trên AB. Đặt AH = x. Trên đường thẳng vuông góc với ( P ) tại M lấy điểm S sao cho SM = MH. Tìm tâm và tính bán kính mặt cầu ngoại tiếp tứ diện S. ABM theo x, R.
Câu hỏi số 392:
Trong mặt pẳng với hệ trục Oxy cho đường tròn: ( C1 ): x2 + y2 -2x + 4y + 2 = 0. Viết phương trình đường tròn ( C2 ) tâm K(5 ; 1) biết đường tròn ( C2 ) cắt đường tròn ( C1 ) tại hai điểm M, N sao cho MN = √5.
Câu hỏi số 393:
Trong mặt phẳng Oxy cho điểm I ( -2; 0 ) và hai đương thẳng: d1: 2x- y + 5 = 0; d2: x + y – 3 = 0. Viết phương trình đường thẳng d đi qua I và cắt d1, d2 lần lượt ở A, B sao cho :
= 2
.
Câu hỏi số 394:
Trên các cạnh AB; BC; CD; DA có hình vuông ABCD lần lượt lấy 1, 2, 3, n điểm phân biệt khác A, B, C, D (n ≥ 3). Tìm n biết sô tam giác có 3 đỉnh lấy từ n + 6 điểm đã chọn là 439.
Câu hỏi số 395:
Cho họ đường tròn ( Cm) có phương trình: x2 + y2 – 2mx – 2(m + 1)y – 12 = 0. a)Tìm quỹ tích tâm của họ đường tròn trên. b)Với giá trị nào của m thì bán kính của họ đường tròn bé nhất.
Câu hỏi số 396:
Cho hai đường thẳng: d1: x + y – 2 = 0; d2 : 2x – y – 1 = 0. Viết phương trình đường thẳng ∆ đối xứng với d1 qua d2.
Câu hỏi số 397:
Trong không gian Oxyz cho mặt phẳng (P): x + y – 2z + 3 = 0, điểm A(1;1;-2) và đường thẳng ∆ là giao tuyến của hai mặt phẳng x – 2y + 7 = 0 và 4y – z – 12 = 0. Tìm phương trình đường thẳng d qua A cắt đường thẳng ∆ và song song với mặt phẳng (P).
Câu hỏi số 398:
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, giao điểm I của AC và BD thuộc đường thẳng d: x – y – 3 = 0 có hoành độ x1 =
, trung điểm H của AB là giao điểm của (d) và trục Ox. Tìm tọa độ các đỉnh của hình chữ nhật.
Câu hỏi số 399:
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm I của tam giác ABC đến mặt phẳng (A’BC) bằng
. Tính thể tích của hình lăng trụ ABC.A’B’C’ theo a.
Câu hỏi số 400:
Trong mặt phẳng Oxy cho điểm A(2; -3), B(3; -2), ∆ABC có diện tích bằng
, trọng tâm G của ∆ABC thuộc đường thẳng d: 3x - y -8 = 0. Tìm bán kính đường tròn nội tiếp ∆ABC.
Còn hàng ngàn bài tập hay, nhanh tay thử sức!
>> Luyện thi tốt nghiệp THPT và Đại học, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












