Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Phương trình, Bất PT và hệ PT đại số

Chuyên đề này giới thiệu một số bài toán về phương trình, bất phương trình, hệ phương trình đại số, ôn tập các phương pháp giải hệ phương trình rèn

Lưu ý: Chức năng này hiện không còn dùng nữa, vui lòng chọn các khóa học để xem các bài giảng hoặc làm đề thi online!

Bài tập luyện

Câu hỏi số 271:

Giải hệ phương trình: \left\{\begin{matrix} 3^{y-2x+1}(1+4^{2x-y-1})=2^{2x-y-1}+1\\log_{2}(y^{2}+2x+2y+5)+y=2x+1 \end{matrix}\right.

Câu hỏi số 272:

Giải bất phương trình: log_{\frac{1}{2}} \sqrt{2x^{2}+3x+1} + \frac{1}{2}log2 (x + 1)2\frac{1}{2}.

Câu hỏi số 273:

Cho a, b, c là các số dương. Chứng minh bất đẳng thức      \frac{a}{a+\sqrt{(a+b)(a+c)}} + \frac{b}{b+\sqrt{(b+c)(b+a)}} + \frac{c}{c+\sqrt{(c+a)(c+b)}}  ≤ 1.    

Câu hỏi số 274:

\left\{\begin{matrix} x^{5}+xy^{4}=y^{10}+y^{6} (1)\\\sqrt{4x+5}+\sqrt{y^{2}+8}=6 (2) \end{matrix}\right.                 (I)

Câu hỏi số 275:

Cho a, b là các số dương thỏa mãn: ab + a + b = 3.    Chứng minh:  \frac{3a}{b+1} + \frac{3b}{a+1} + \frac{ab}{a+b}  ≤ a2 + b2 + \frac{3}{2} .

Câu hỏi số 276:

Giải phương trình  log2 \frac{2^{x}-1}{|x|}  = 1 + x - 2x

Câu hỏi số 277:

Giải hệ phương trình sau: \left\{\begin{matrix} 2x^{2}-xy-y^{2}=9\\log_{3}(x^{2}-2xy+y^{2})+log_{\frac{1}{3}}\frac{2x+y}{x-y}=2 \end{matrix}\right.

Câu hỏi số 278:

Giải phương trình trên C: z4 + 3z2 +4 = 0.

Câu hỏi số 279:

Cho x và y là hai số thực thay đổi và không cùng bằng 0. Chứng minh: -2√2 - 2 ≤ \frac{x^{2}-(x-4y)^{2}}{x^{2}+4y^{2}} ≤ 2√2 - 2

Câu hỏi số 280:

Giải hệ phương trình: \left\{\begin{matrix} 2(x+y)^{3}+4xy-3=0\\(x+y)^{4}-2x^{2}-4xy+2y^{2}+x-3y+1=0 \end{matrix}\right.

Còn hàng ngàn bài tập hay, nhanh tay thử sức!

>> Luyện thi tốt nghiệp THPT và Đại học, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. 

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com