Hình giải tích trong không gian
Lưu ý: Chức năng này hiện không còn dùng nữa, vui lòng chọn các khóa học để xem các bài giảng hoặc làm đề thi online!
Bài tập luyện
Câu hỏi số 311:
Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). AB = a, BC = a, góc giữa cạnh bên SB và mp(ABC) bằng 600. M là trung điểm của cạnh AB. Tính khoảng cách từ B đến (SMC).
Câu hỏi số 312:
Trong không gian Oxyz cho mặt cầu (S): x2+y2+z2-4x+6y-2z-28=0 và hai đường thẳng: d1: và d2:== Viết phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) và song song với hai đường thẳng d1,d2.
Câu hỏi số 313:
Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đều S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Gọi M là trung điểm của AC và N là trực tâm tam giác SAB. Tính độ dài đoạn MN.
Câu hỏi số 314:
Trong không gian với hệ tọa độ vuông góc với Oxyz, cho hình chóp tứ giác đẻ S.ABCD, biết S(3; 2; 4); A(1; 2; 3); C(3; 0; 3). Xác định tọa độ tâm I của mặt cầu ngoại tiếp hình chóp S.ABCD.
Câu hỏi số 315:
Trong không gian Oxyz cho A(3;0;0), B( 0 ;0; 1). Lập phương trình mặt phẳng (P) qua A, B và tạo với mặt phẳng Oxy một góc bằng 600.
Câu hỏi số 316:
Trong không gian Oxyz hãy lập phương trình mặt phẳng (P) chứa trục Oz và tạo với mặt phẳng (Q): 2x + y - √5z= 0 một góc 600.
Câu hỏi số 317:
Trong không gian với hệ tọa độ Đề - các vuông góc Oxyz cho A( 3;0;0), B(1;2;1), C(2;-1;2). Gọi I là trung điểm của đoạn OA. Lập phương trình mặt phẳng (BIC)0. Chứng minh rằng với điểm M bất kì thuộc mặt phẳng (BIC) thì M luôn cách đều hai mặt phẳng ( OBC) và ( ABC)
Câu hỏi số 318:
Trong không gian cho Oxyz cho lăng trụ đứng OAB.O1A1B1 với A(2;0;0), B(0;4;0), O1(0;0;4). Gọi M là trung điểm AB. Mặt phẳng (P) qua M vuông góc với O1A và cắt OA, AA1 lần lượt tại N, K. Tính độ dài KN.
Câu hỏi số 319:
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Đặt hệ tọa độ Oxyz sao cho A( 0; 0; 0), B(1;0;0),D(0;1;0) và A’(0;0;1). a)Viết phương trình mặt phẳng (BB’D’D). b)Xét hai măt phẳng (P) chứa CD’, gọi α là góc giữa (P) và mặt phẳng (BB’D’D). Tìm giá trị nhỏ nhất của α .
Câu hỏi số 320:
Trong không gian Oxyz cho hai điểm A(2;2;3), B(5;0;2) và đường thẳng d : = = a)Chứng minh rằng đường thẳng d và đường thẳng qua A và B chéo nhau. Viết phương trình đường vuông góc chung của hai đường thẳng ấy. b)Xác định điểm M trên d sao cho diện tích tam giác MAB đạt giá trị nhỏ nhất. phương trình đường thẳng đi qua A và B có VTCP = (3;-2;-1).
Còn hàng ngàn bài tập hay, nhanh tay thử sức!
>> Luyện thi tốt nghiệp THPT và Đại học, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com