Hàm số và các bài toán liên quan
Chuyên đề này giúp học sinh giải các bài tập về hàm số và các bài toán liên quan.
Lưu ý: Chức năng này hiện không còn dùng nữa, vui lòng chọn các khóa học để xem các bài giảng hoặc làm đề thi online!
Bài tập luyện
Câu hỏi số 1:
Cho hàm số
Gọi I(3;1). Tìm m để đồ thị hàm số đã cho có 2 điểm cực trị A, B sao cho 3 điểm I, A, B thẳng hàng
Câu hỏi số 2:
Cho hàm số
a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b. Tìm m để đường thẳng d: y = mx + 1 cắt (C) tại 2 điểm phân biệt sao cho tiếp tuyến của (C) tại 2 điểm đó song song với nhau
Câu hỏi số 3:
Cho hàm số y = x3 -3x-2 (1).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
b) Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của (C) tại điểm M có hệ số góc bằng 9.
Câu hỏi số 4:
Cho hàm số y = x3 -3mx+1 (1) với m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
b) Cho điểm A(2;3). Tìm m để đồ thi hàm sỗ (1) có hai điểm cực trị B và C sao cho tam giác ABC cân tạ A.
Câu hỏi số 5:
(2.0 điểm) Cho hàm số y = (1)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
b) Tìm tọa độ điểm M thuộc (C) sao cho khoảng cách từ M đến đường thẳng y = -x bằng √2
Câu hỏi số 6:
Cho hàm số y = x3 - 3x + 1, có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) (HS tự làm)
Tìm tọa độ điểm A thuộc đồ thị (C), biết rằng tiếp tuyến của đồ thị (C) tại điểm A cắt đồ thị tại B (khác điểm A) thỏa mãn xA + xB = 1 (trong đó xA, xB lần lượt là hoành độ các điểm A và B)
Câu hỏi số 7:
Cho hàm số y = x3 −6x2 +3(m+ 2)x+ 4m−5 có đồ thị (Cm), với m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m =1.
b) Tìm m để trên (Cm) tồn tại đúng hai điểm có hoành độ lớn hơn 1 sao cho các tiếp tuyến tại mỗi điểm đó của (Cm) vuông góc với đường thẳng d : x + 2y +3 = 0.
Câu hỏi số 8:
Cho hàm số y = (1)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
b) Tìm tọa độ hai điểm A,B phân biệt thuộc (C) sao cho tiếp tuyến của (C) tại các điểm A,B song song với nhau, đồng thời ba điểm O, A,B tạo thành tam giác vuông tại O (với O là gốc tọa độ).
Câu hỏi số 9:
Cho hàm số y = x4 −(m+1)x2 + 2m+1 có đồ thị (Cm), với m là tham số thực.
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m =1.
b) Cho I(0;− ). Tìm m để (Cm) có điểm cực đại là A, hai điểm cực tiểu là B và C sao cho tứ giác ABIC là hình thoi.
Câu hỏi số 10:
Cho hàm số y = x4 −2x2.
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đi qua điểm A(1;−1).
Còn hàng ngàn bài tập hay, nhanh tay thử sức!
>> Luyện thi tốt nghiệp THPT và Đại học, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com.
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com